Algebra für Einsteiger: Von der Gleichungsauflösung zur by Jörg Bewersdorff

By Jörg Bewersdorff

Dieses Buch ist eine leichtverst?ndliche Einf?hrung in die Algebra, die den historischen und konkreten Aspekt in den Vordergrund r?ckt. Der rote Faden ist eines der klassischen und fundamentalen Probleme der Algebra: Nachdem im sixteen. Jahrhundert allgemeine L?sungsformeln f?r Gleichungen dritten und vierten Grades gefunden wurden, schlugen entsprechende Bem?hungen f?r Gleichungen f?nften Grades fehl. Nach quickly dreihundertj?hriger Suche f?hrte dies schlie?lich zur Begr?ndung der so genannten Galois-Theorie: Mit ihrer Hilfe kann festgestellt werden, ob eine Gleichung mittels geschachtelter Wurzelausdr?cke l?sbar ist. Das Buch liefert eine gute Motivation f?r die moderne Galois-Theorie, die den Studierenden oft so abstrakt und schwer erscheint.

Show description

Read Online or Download Algebra für Einsteiger: Von der Gleichungsauflösung zur Galois-Theorie PDF

Similar algebra books

Bob Miller's Algebra for the Clueless (Clueless Series)

A is for Algebra-and that's the grade you'll pull should you use Bob Miller's basic consultant to the maths direction each college-bound child needs to take

With 8 books and greater than 30 years of hard-core lecture room adventure, Bob Miller is the pissed off student's ally. He breaks down the complexities of each challenge into easy-to-understand items that any math-phobe can understand-and this totally up to date moment version of Bob Miller's Algebra for the Clueless covers every little thing a you want to understand to excel in Algebra I and II.

Représentations linéaires des groupes finis

Advent du livre par l’auteur :

    Ce livre est shapeé de trois events, de niveaux et de buts assez différents :

    La première partie a été écrite à l’usage des chimistes théoriciens. Elle reveal los angeles correspondance, due à Frobenius, entre représentations linéaires et caractères. Il s’agit de résultats fondamentaux, d’usage consistent aussi bien en mathématique qu’en chimie quantique, ou en body. J’ai essayé d’en donner des démonstrations aussi élémentaires que attainable, n’utilisant que l. a. définition même d’un groupe et les rudiments de l’algèbre linéaire. Les exemples (§ 5) ont été choisis parmi ceux qui sont utiles aux chimistes.

    La deuxième partie est un cours donné en 1966 aux élèves de seconde année de l’École Normale. Elle complète l. a. première sur les issues suivants :
a) Degrés des représentations et propriétés d’intégralité des caractères (§ 6).
b) Représentations induites, théorèmes d’Artin et de Brauer, et applications (§§ 7 à 11).
c) Questions de rationalité (§§ 12 et 13).
    Les moyens utilisés sont ceux de l’algèbre linéaire (en un sens plus huge que pour l. a. première partie) : algèbres de groupes, modules, produits tensoriels non commutatifs, algèbres semi-simples.

    La troisième partie est une advent à los angeles théorie de Brauer : passage de los angeles caractéristique zero à los angeles caractéristique p (et inversement). J’ai utilisé librement le langage des catégories abéliennes (modules projectifs, groupes de Grothendieck), bien adapté à ce style de question.
    Les principaux résultats sont :
a) Le fait que l’homomorphisme de décomposition est surjectif : toute représentation irréductible de caractéristique p peut être relevée « virtuellement » (i. e. dans un groupe de Grothendieck convenable) en caractéristique 0.
b) Le théorème de Fong-Swan permettant de supprimer le mot « virtuellement » de l’énoncé précédent, pourvu que le groupe considéré soit
p-résoluble.
    J’ai également donné quelques functions aux représentations d’Artin.

===== desk des matières =====

Introduction

I. Représentations et caractères

    § 1. Généralités sur les représentations linéaires
        1. 1. Définitions
        1. 2. Premiers exemples
        1. three. Sous-représentations
        1. four. Représentations irréductibles
        1. five. Produit tensoriel de deux représentations

    § 2. Théorie des caractères
        2. 1. Le caractère d’une représentation
        2. 2. Le lemme de Schur; premières applications
        2. three. Les family d’orthogonalité des caractères
        2. four. Décomposition de los angeles représentation régulière
        2. five. Nombre des représentations irréductibles
        2. 6. l. a. décomposition canonique d’une représentation
        2. 7. Décomposition explicite d’une représentation

    § 3. Sous-groupes, produits, représentations induites
        3. 1. Sous-groupes commutatifs
        3. 2. Produit de deux groupes
        3. three. Représentations induites

    § 4. Extension aux groupes compacts
        4. 1. Groupes compacts
        4. 2. Mesure invariante sur un groupe compact
        4. three. Représentations linéaires des groupes compacts

    § 5. Exemples
        5. 1. Le groupe cyclique C_n
        5. 2. Le groupe C_∞
        5. three. Le groupe diédral D_n
        5. four. Le groupe D_nh
        5. five. Le groupe D_∞
        5. 6. Le groupe D_∞h
        5. 7. Le groupe alterné A₄
        5. eight. Le groupe symétrique S₄
        5. nine. Le groupe du cube

    Bibliographie (Partie I)

II. Représentations en caractéristique zéro

    § 6. L’algèbre du groupe
        6. 1. Représentations et modules
        6. 2. Décomposition de C[G]
        6. three. Le centre de C[G]
        6. four. Rappels sur les entiers
        6. five. Propriétés d’intégralité des caractères. Applications

    § 7. Représentations induites; critère de Mackey
        7. 1. Rappels
        7. 2. Caractère d’une représentation induite; formule de réciprocité
        7. three. restrict aux sous-groupes
        7. four. Critère d’irréductibilité de Mackey

    § 8. Exemples de représentations induites
        8. 1. Sous-groupes distingués; purposes aux degrés des représentations irréductibles
        8. 2. Produits semi-directs par un groupe commutatif
        8. three. Rappels sur certaines sessions de groupes finis
        8. four. Théorème de Sylow
        8. five. Représentations linéaires des groupes hyper-résolubles

    § 9. Théorème d’Artin
        9. 1. L’anneau R(G)
        9. 2. Énoncé du théorème d’Artin
        9. three. Première démonstration
        9. four. Deuxième démonstration de i) ⇒ ii)

    § 10. Théorème de Brauer
        10. 1. Éléments p-adiques; sous-groupes p-élémentaires
        10. 2. Caractères induits provenant des sous-groupes p-élémentaires
        10. three. development de caractères
        10. four. Démonstration des théorèmes 18 et 18'
        10. five. Théorème de Brauer

    § 11. purposes du théorème de Brauer
        11. 1. Caractérisations des caractères
        11. 2. Un théorème de Frobenius
        11. three. Réciproque du théorème de Brauer
        11. four. Spectre de A ⨂ R(G)

    § 12. Questions de rationalité
        12. 1. Les anneaux de R_K(G) et \\bar{R}_K(G)
        12. 2. Indices de Schur
        12. three. Réalisabilité sur les corps cyclotomiques
        12. four. Rang du groupe R_K(G)
        12. five. Généralisation du théorème d’Artin
        12. 6. Généralisation du théorème de Brauer
        12. 7. Démonstration du théorème 28

    § 13. Questions de rationalité : exemples
        13. 1. Le cas du corps des nombres rationnels
        13. 2. Le cas du corps des nombres réels

    Bibliographie (Partie II)

III. creation à l. a. théorie de Brauer

    § 14. Les groupes R_K(G), R_k(G) et P_k(G)
        14. 1. Les anneaux R_K(G) et R_k(G)
        14. 2. Les groupes P_k(G) et P_A(G)
        14. three. constitution de P_k(G)
        14. four. constitution de P_A(G)
        14. five. Dualités
        14. 6. Extension des scalaires

    § 15. Le triangle cde
        15. 1. Définition de c : P_k(G) → R_k(G)
        15. 2. Définition de d : R_K(G) → R_k(G)
        15. three. Définition de e : P_k(G) → R_K(G)
        15. four. Premières propriétés du triangle cde
        15. five. Exemple : le cas des p'-groupes
        15. 6. Exemple : le cas des p-groupes
        15. 7. Exemple : produits de p'-groupes et de p-groupes

    § 16. Théorèmes
        16. 1. Propriétés du triangle cde
        16. 2. Caractérisation de l’image de e
        16. three. Caractérisation des A[G]-modules projectifs par leur caractère
        16. four. Exemples de A[G]-modules projectifs : représentations irréductibles de défaut nul

    § 17. Démonstrations
        17. 1. Changement de groupe
        17. 2. Le théorème de Brauer dans le cas modulaire
        17. three. Démonstration du théorème 33
        17. four. Démonstration du théorème 35
        17. five. Démonstration du théorème 37
        17. 6. Démonstration du théorème 38

    § 18. Caractères modulaires
        18. 1. Le caractère modulaire d’une représentation
        18. 2. Indépendance des caractères modulaires
        18. three. Traductions
        18. four. Une part de d
        18. five. Exemple : caractères modulaires du groupe symétrique S₄
        18. 6. Exemple : caractères modulaires du groupe alterné A₄

    § 19. program aux représentations d’Artin
        19. 1. Représentations d’Artin et de Swan
        19. 2. Rationalité des représentations d’Artin et de Swan
        19. three. Un invariant

    Annexe

    Bibliographie (Partie III)

Index des notations
Index terminologique

Additional info for Algebra für Einsteiger: Von der Gleichungsauflösung zur Galois-Theorie

Example text

0 aufgegeben wird. Es bleibt noch anzumerken, dass die schönsten und kürzesten Beweise des Fundamentalsatzes der Algebra auf grundlegenden Sätzen der so genannten Funktionentheorie, wie die Infinitesimalrechnung für den Bereich der komplexen Zahlen bezeichnet wird, beruhen. 38 Die Suche nach weiteren Auflösungsformeln 5 Die Suche nach weiteren Auflösungsformeln Gibt es einen gemeinsamen " Bauplan " für die Lösungsformeln der Gleichungen bis zum vierten Grad? 1. Die von Cardano veröffentlichten Verfahren zur Auflösung von kubischen und biquadratischen Gleichungen markieren den Beginn einer historischen Periode, in der es vielfältige Versuche gegeben hat, eine allgemeine Formel zur Lösung von Gleichungen fünften Grades zu finden.

Lagranges universelle Konstruktion führt für dieses Beispiel zur Gleichung (z -t(x(x2 + X 3X 4 ) + s)(z -t(X IX 3 + X 2X 4 ) + s)(z -t(x(x4 + X 2X 3 ) + s) = 0, wobei zur Abkürzung S(Xl>X 2 ,X3 ,X4 ) = I~(XI +x2 +x3 +X4 )2 47 Die Suche nach weiteren Auflösungsformeln gesetzt wurde. Multipliziert man die drei Linearfaktoren miteinander, erhält man - nun aber auf einem allgemein beschreitbaren Weg - wieder die schon aus Kapitel 3 bekannte kubische Resolvente. Nicht nur in diesem speziellen Fall, sondern auch allgemein findet man mit Lagranges Konstruktion eine Gleichung für die Unbekannte z, bei der die Koeffizienten Polynome in den Variablen XI, X2, •..

Ferrari war es nämlich gelungen, biquadratische Gleichungen der Form x 4 + px 2 + qx + r = 0 durch Addition zwei weiterer Terme zu den Potenzen x und x 2 so umzuformen, dass auf bei den Seiten ein Quadrat entsteht. Geringfügig abweichend von dem Weg, den Cardano in seinem Buch beschreibt, addiert man dazu am einfachsten unter Verwendung eines später noch geeignet auszuwählenden Wertes z auf bei den Seiten der Gleichung 2ZX2 + l und erhält dadurch Während die linke Seite bereits wie gewünscht die Form eines Quadrates (x 2 + Z)2 aufweist, ist das für die rechte Seite nicht zwangsläufig der Fall.

Download PDF sample

Rated 4.75 of 5 – based on 46 votes