Aigebres Connexes et Homologie des Espaces de Lacets by Jean Michel Lemaire

By Jean Michel Lemaire

Show description

Read Online or Download Aigebres Connexes et Homologie des Espaces de Lacets PDF

Best algebra books

Bob Miller's Algebra for the Clueless (Clueless Series)

A is for Algebra-and that's the grade you'll pull for those who use Bob Miller's easy advisor to the maths direction each college-bound child needs to take

With 8 books and greater than 30 years of hard-core lecture room adventure, Bob Miller is the annoyed student's ally. He breaks down the complexities of each challenge into easy-to-understand items that any math-phobe can understand-and this totally up-to-date moment version of Bob Miller's Algebra for the Clueless covers every little thing a you must recognize to excel in Algebra I and II.

Représentations linéaires des groupes finis

Advent du livre par l’auteur :

    Ce livre est shapeé de trois events, de niveaux et de buts assez différents :

    La première partie a été écrite à l’usage des chimistes théoriciens. Elle reveal los angeles correspondance, due à Frobenius, entre représentations linéaires et caractères. Il s’agit de résultats fondamentaux, d’usage consistent aussi bien en mathématique qu’en chimie quantique, ou en body. J’ai essayé d’en donner des démonstrations aussi élémentaires que attainable, n’utilisant que los angeles définition même d’un groupe et les rudiments de l’algèbre linéaire. Les exemples (§ 5) ont été choisis parmi ceux qui sont utiles aux chimistes.

    La deuxième partie est un cours donné en 1966 aux élèves de seconde année de l’École Normale. Elle complète l. a. première sur les issues suivants :
a) Degrés des représentations et propriétés d’intégralité des caractères (§ 6).
b) Représentations induites, théorèmes d’Artin et de Brauer, et applications (§§ 7 à 11).
c) Questions de rationalité (§§ 12 et 13).
    Les moyens utilisés sont ceux de l’algèbre linéaire (en un sens plus huge que pour l. a. première partie) : algèbres de groupes, modules, produits tensoriels non commutatifs, algèbres semi-simples.

    La troisième partie est une creation à los angeles théorie de Brauer : passage de l. a. caractéristique zero à l. a. caractéristique p (et inversement). J’ai utilisé librement le langage des catégories abéliennes (modules projectifs, groupes de Grothendieck), bien adapté à ce style de question.
    Les principaux résultats sont :
a) Le fait que l’homomorphisme de décomposition est surjectif : toute représentation irréductible de caractéristique p peut être relevée « virtuellement » (i. e. dans un groupe de Grothendieck convenable) en caractéristique 0.
b) Le théorème de Fong-Swan permettant de supprimer le mot « virtuellement » de l’énoncé précédent, pourvu que le groupe considéré soit
p-résoluble.
    J’ai également donné quelques functions aux représentations d’Artin.

===== desk des matières =====

Introduction

I. Représentations et caractères

    § 1. Généralités sur les représentations linéaires
        1. 1. Définitions
        1. 2. Premiers exemples
        1. three. Sous-représentations
        1. four. Représentations irréductibles
        1. five. Produit tensoriel de deux représentations

    § 2. Théorie des caractères
        2. 1. Le caractère d’une représentation
        2. 2. Le lemme de Schur; premières applications
        2. three. Les kin d’orthogonalité des caractères
        2. four. Décomposition de los angeles représentation régulière
        2. five. Nombre des représentations irréductibles
        2. 6. los angeles décomposition canonique d’une représentation
        2. 7. Décomposition explicite d’une représentation

    § 3. Sous-groupes, produits, représentations induites
        3. 1. Sous-groupes commutatifs
        3. 2. Produit de deux groupes
        3. three. Représentations induites

    § 4. Extension aux groupes compacts
        4. 1. Groupes compacts
        4. 2. Mesure invariante sur un groupe compact
        4. three. Représentations linéaires des groupes compacts

    § 5. Exemples
        5. 1. Le groupe cyclique C_n
        5. 2. Le groupe C_∞
        5. three. Le groupe diédral D_n
        5. four. Le groupe D_nh
        5. five. Le groupe D_∞
        5. 6. Le groupe D_∞h
        5. 7. Le groupe alterné A₄
        5. eight. Le groupe symétrique S₄
        5. nine. Le groupe du cube

    Bibliographie (Partie I)

II. Représentations en caractéristique zéro

    § 6. L’algèbre du groupe
        6. 1. Représentations et modules
        6. 2. Décomposition de C[G]
        6. three. Le centre de C[G]
        6. four. Rappels sur les entiers
        6. five. Propriétés d’intégralité des caractères. Applications

    § 7. Représentations induites; critère de Mackey
        7. 1. Rappels
        7. 2. Caractère d’une représentation induite; formule de réciprocité
        7. three. restrict aux sous-groupes
        7. four. Critère d’irréductibilité de Mackey

    § 8. Exemples de représentations induites
        8. 1. Sous-groupes distingués; functions aux degrés des représentations irréductibles
        8. 2. Produits semi-directs par un groupe commutatif
        8. three. Rappels sur certaines periods de groupes finis
        8. four. Théorème de Sylow
        8. five. Représentations linéaires des groupes hyper-résolubles

    § 9. Théorème d’Artin
        9. 1. L’anneau R(G)
        9. 2. Énoncé du théorème d’Artin
        9. three. Première démonstration
        9. four. Deuxième démonstration de i) ⇒ ii)

    § 10. Théorème de Brauer
        10. 1. Éléments p-adiques; sous-groupes p-élémentaires
        10. 2. Caractères induits provenant des sous-groupes p-élémentaires
        10. three. development de caractères
        10. four. Démonstration des théorèmes 18 et 18'
        10. five. Théorème de Brauer

    § 11. functions du théorème de Brauer
        11. 1. Caractérisations des caractères
        11. 2. Un théorème de Frobenius
        11. three. Réciproque du théorème de Brauer
        11. four. Spectre de A ⨂ R(G)

    § 12. Questions de rationalité
        12. 1. Les anneaux de R_K(G) et \\bar{R}_K(G)
        12. 2. Indices de Schur
        12. three. Réalisabilité sur les corps cyclotomiques
        12. four. Rang du groupe R_K(G)
        12. five. Généralisation du théorème d’Artin
        12. 6. Généralisation du théorème de Brauer
        12. 7. Démonstration du théorème 28

    § 13. Questions de rationalité : exemples
        13. 1. Le cas du corps des nombres rationnels
        13. 2. Le cas du corps des nombres réels

    Bibliographie (Partie II)

III. advent à l. a. théorie de Brauer

    § 14. Les groupes R_K(G), R_k(G) et P_k(G)
        14. 1. Les anneaux R_K(G) et R_k(G)
        14. 2. Les groupes P_k(G) et P_A(G)
        14. three. constitution de P_k(G)
        14. four. constitution de P_A(G)
        14. five. Dualités
        14. 6. Extension des scalaires

    § 15. Le triangle cde
        15. 1. Définition de c : P_k(G) → R_k(G)
        15. 2. Définition de d : R_K(G) → R_k(G)
        15. three. Définition de e : P_k(G) → R_K(G)
        15. four. Premières propriétés du triangle cde
        15. five. Exemple : le cas des p'-groupes
        15. 6. Exemple : le cas des p-groupes
        15. 7. Exemple : produits de p'-groupes et de p-groupes

    § 16. Théorèmes
        16. 1. Propriétés du triangle cde
        16. 2. Caractérisation de l’image de e
        16. three. Caractérisation des A[G]-modules projectifs par leur caractère
        16. four. Exemples de A[G]-modules projectifs : représentations irréductibles de défaut nul

    § 17. Démonstrations
        17. 1. Changement de groupe
        17. 2. Le théorème de Brauer dans le cas modulaire
        17. three. Démonstration du théorème 33
        17. four. Démonstration du théorème 35
        17. five. Démonstration du théorème 37
        17. 6. Démonstration du théorème 38

    § 18. Caractères modulaires
        18. 1. Le caractère modulaire d’une représentation
        18. 2. Indépendance des caractères modulaires
        18. three. Traductions
        18. four. Une part de d
        18. five. Exemple : caractères modulaires du groupe symétrique S₄
        18. 6. Exemple : caractères modulaires du groupe alterné A₄

    § 19. software aux représentations d’Artin
        19. 1. Représentations d’Artin et de Swan
        19. 2. Rationalité des représentations d’Artin et de Swan
        19. three. Un invariant

    Annexe

    Bibliographie (Partie III)

Index des notations
Index terminologique

Additional resources for Aigebres Connexes et Homologie des Espaces de Lacets

Example text

8 P r o p o s i t i o n . Proof: The generating function for the Hn is given by Multiply by e * and integrate the relation °° n n=0 from 0 to oo. This yields the result, recalling that the moments convert to the H„. 5 INTEGRATED COSTS IN KNUTH'S MODEL Now we apply the results of the previous section to find the behavior of the integrated costs. We consider the case where the cost function is linear in k. Thus, we consider the function COk = k. As noted above, the contribution of a constant to the integrated cost is of order n.

2. 1 P r o p o s i t i o n . 2 Corollary. have the expansion For the polynomials (t>k{x,t) = f^'I'^Ukix 12-^1) of Prop. QT wijere M{s) is the corresponding moment generating ... 5, we need to expand the coefficients V(s)" in powers of s. This is where we use Lagrange inversion. 3 P r o p o s i t i o n . Let V(s) = (1 - ^ 1 -As'^t)/2s. 'f(,„,V)'Proof: Let x = V{s) = (1 - Vl - 'is'^t)/2s. Then one readily finds that X s = X2 +t Applying the Lagrange inversion formula, Ch. 3, we have, with XQ = SQ = 0, writing D for d/dx, jt=i Expanding (x'^ + <)* by the binomial theorem and differentiating accordingly, the result follows.

I \-hxz To identify this, consider the hypergeometric function Fia,b,s)=2Fo Writing out the series, one checks: I ... 1 P r o p o s i t i o n . We have the recurrence aSiFo Write this, using the symmetry F{a,b,s) F{a,b+l,s) Fia,b,s) = 1 = F{b,a,s), 1 • as a + 1,6+1 as F{b+l,a + l,s) F{b+l,a,s) Iterating yields the continued fraction 1 / 1-as / l-{b + l)3 / l-{a + l)s / l-{b + 2)s / With a = | , 6 = 0, 5 = 2xz, we recover eq. 1). Since F{a,0,s) ... — 1, we have oo i^(|,l,2x0) = ^ ( | ) „ ( 2 x ^ r n=0 and hence /f3"„ = n !

Download PDF sample

Rated 4.26 of 5 – based on 22 votes